United States Patent

US009442941B1

(12) 10) Patent No.: US 9,442,941 B1
Luz et al. 45) Date of Patent: Sep. 13, 2016
(54) DATA STRUCTURE FOR HASH DIGEST %882;81‘9“3‘3%2 ii ggggg Ifiréld |
odd et al.
METADATA COMPONENT 2006/0031653 Al 2/2006 Todd et al.
. . . 2009/0222596 Al 9/2009 Flynn et al.
(71) Applicant: EMC Corporation, Hopkinton, MA 2010/0042790 Al 2/2010 Mondal et al.
(US) 2010/0180145 Al 7/2010 Chu
2012/0124282 Al* 5/2012 Frankoceoevrns GO6F 3/061
. : . 711/108
(72) Inventors: Kobi Luz, Rehovot (IL); Tal 2013/0290285 AL* 10/2013 Gopal ...ovvrv..... GOGF 17/3033
Ben-Moshe, Kiryat Ono (IL); Renen 707/698
Hallak, Sde Warburg (IL) 2014/0019764 Al* 12014 Gopal ... HO041 9/3247
713/176
(73) Assignee: EMC CORPORATION, Hopkinton 2014/0032992 Al* 12014 Hara ..o GOGF 12/0246
’ ’ 714/773
MA (US) 2014/0244598 Al* 82014 Haustein GO6F 17/30156
. 707/692
(*) Notice: Subject to any disclaimer, the term of this 2015/0019507 Al* 1/2015 Aronovich GOGF 17/30156
patent is extended or adjusted under 35 707/692
U.S.C. 154(b) by 178 days. 2015/0098563 Al* 4/2015 Gulleyccooo.... HOAL 9/0643
380/28
(21) Appl. No.: 14/229,491
FOREIGN PATENT DOCUMENTS
(22) Filed: Mar. 28, 2014 EP 1804157 212007
WO WO 2010/019596 2/2010
(51) Int. CL WO WO 2010/040078 4/2010
GOG6F 17/00 (2006.01) WO WO 2012/066528 5/2012
GO6F 17/30 (2006.01)
OTHER PUBLICATIONS
(52) US.CL
CPC oot GO6F 17/30097 (2013.01) U.S. Appl. No. 12/945,915, downloaded Mar. 27, 2014.
(58) Field of Classification Search (Continued)
None
See application file for complete search history. Primary Examiner — Hung Le
. 74) Attorney, Agent, or Firm — Daly, Crowley, Mofford &
(56) References Cited]()ur)kee, LLPy & Y Y
U.S. PATENT DOCUMENTS
(57) ABSTRACT
5,860,137 A /1999 Raz et al. In one aspect, a method includes providing a server that
6,085,198 A * 7/2000 Skinner GO6F 8/315 hash di d bl d fiouri C .
6125399 A * 9/2000 Hamilton HO4L 29/06 stores a hash digest metadata table and configuring entries in
370/392 the hash digest metadata table to include entries that include
6,643,654 Bl 11/2003 Patel et al. persistent fields and non-persistent fields. The hash digest
7,908,436 Bl 3/2011 Srinivasan et al. metadata table maps a hash digest representing X-Page data
7,908,484 B2 3/2011 Haukka HO4L 9/0844 to its metadata information. The persistent fields include a
380728 Short hash digest field, a physical layout offset field
8,200,923 Bl 6/2012 Healey et al. short hash digest Tield, a physical layout ofiset held, a
8,478,951 BI 7/2013 Healey et al. deduplication reference count field and a flags field.
9,104,326 B2* 8/2015 Frankcceonn... GO6F 3/061
2005/0125626 Al 6/2005 Todd 14 Claims, 9 Drawing Sheets
D Module
HMD 802 600
Hash digest
metadata table
604
APls
08
ubc PLC
G618 832

US 9,442,941 B1
Page 2

(56) References Cited
OTHER PUBLICATIONS

Advance E-Mail Notification Concerning Transmittal of Interna-
tional Preliminary Report on Patentability dated May 30, 2013 from
the ISA for International Appl. No. PCT/IL2011/000692.

International Search Report and the Written Opinion of the ISA
dated Dec. 1, 2011 for PCT Appl. No. PCT/IL2011/000692.

U.S. Appl. No. 13/901,062, filed May 23, 2013, entitled “Method &
Apparatus for Block Level Data De-Duplication”.

* cited by examiner

US 9,442,941 B1

Sheet 1 of 9

Sep. 13, 2016

U.S. Patent

IO

YoUMS

NYS €t

i

aneueul
NYS

aoBLIaI]
YIUME

!

07 SPON NVS + sinduwioly

NYS €

A

B0ELS BOBLISIU]
NYS UOUMG
=]
e

0Z 8PON NVS + sindwo)

or —

A AA
A A
SEYS Iy soepeu
ass YOG
g1 (2%
¢ D

8155

Aees A A\

N SN
ISAUG BOBLISI
ass ynmag mﬂ
ot i
a O

0¢ SponN 3HOLS + andwod

U.S. Patent Sep. 13,2016 Sheet 2 of 9 US 9,442,941 B1

208

FiG. 2

US 9,442,941 B1

Sheet 3 of 9

Sep. 13, 2016

U.S. Patent

P}

(a

£ DA
sdss NVS LUoumg 5SS UDIMES
AAAAAA N N/ W
wx) it q0E ﬁz 30%
1BALO QoBLIBIY| BoBUSI| IBALC SORLSIU]
ass NYS HOUMS ass YOS
1 I ™"
fF HY L P21l oHd P HEED QL O
b oo ook I b o ook
BOC epON THOLS + NYS + sindwo) FOC OpON AMOLS + aindwod
NVS HOUMS YouMS
Wi N N
gi¢ Iy B¢
SORLEIU] aoBBIYy SopLISIY
NYS Youmg YOUMG

!

T
P H IO
S I N

zhoe BPON NYS + amdiios

!

e
P H
-

O0F spoN sindwion

-
o
—

!

m
wd

(=)

U.S. Patent Sep. 13,2016 Sheet 4 of 9 US 9,442,941 B1

MNodes 1 Node 2

400 402
Switch Switch ® e
Interface interface

446 4406

i 1

Swiich
404
FIG. 4

Compute + SAN + STORE Node 506

R C D
500 502 304
Switch SAN SSh
Interface interface Diriver

208 510 212

e S

A N W e N

SAN S5Ds

FiG. 5

US 9,442,941 B1

Sheet 5 of 9

Sep. 13, 2016

U.S. Patent

9 DI

SR YN

fe4/00ng

(nd 'H} ‘P
‘ibay peay

je.4/00Ng

id WX
‘Cibey peay

\

abe -y sug paubyy

US 9,442,941 B1

Sheet 6 of 9

Sep. 13, 2016

U.S. Patent

L OIH
a SIIM YINTH
Y,y

je400ng

O Eind 2 (eiad "LHD)

BaS Ply ‘Qibey prey
fe4/ams HE 400G

0!

(C HEnd 2H) ad LH) (" 'gnd ‘Lad)

mm ‘azIS ‘Pl ‘gibey pesy mm ‘971G VX1 ‘Gibay pesy
UM YN

US 9,442,941 B1

Sheet 7 of 9

Sep. 13, 2016

U.S. Patent

& Did
plog & " (pioH ‘aibay) ere(
SIUM YINGY -2 dmjoeqgQ
pesl yiNay
jle4/0ong
1efieig 3

mmmi (g ‘M) ‘pied ‘qibey B

lled/00ns

Nid 'H 'YX ‘aibey sium

US 9,442,941 B1

Sheet 8 of 9

Sep. 13, 2016

U.S. Patent

6 Did
SHITIRVIA TGP E I Sem—— el
N
PESI YN
HEA/290S ILSEE e 4/00nS
wbiein u
S B A R IE R R L | (zngiag) D0y
‘@2iS ‘P ‘Cibey EIps SIS YT '(ibey Sl

U.S. Patent Sep. 13,2016 Sheet 9 of 9 US 9,442,941 B1

D Module
HMD 602 600

Hash digest
metadata {able
604

APls
606

/

uDc PLC
618 632

FiIG. 10

700

Persistent Non-persistent
fields fields

714 730

FiGg. 11

714

Short Hash Physical Deduplication

- Layout Reference Flags
Digest Offset Count 822
s 808 814

FIG. 12

US 9,442,941 Bl

1

DATA STRUCTURE FOR HASH DIGEST
METADATA COMPONENT

BACKGROUND

Storage systems in general, and block based storage
systems specifically, are a key element in modern data
centers and computing infrastructure. These systems are
designed to store and retrieve large amounts of data, by
providing data block address and data block content—for
storing a block of data—and by providing a data block
address for retrieval of the data block content that is stored
at the specified address.

Storage solutions are typically partitioned into categories
based on a use case and application within a computing
infrastructure, and a key distinction exists between primary
storage solutions and archiving storage solutions. Primary
storage is typically used as the main storage pool for
computing applications during application run-time. As
such, the performance of primary storage systems is very
often a key challenge and a major potential bottleneck in
overall application performance, since storage and retrieval
of data consumes time and delays the completion of appli-
cation processing. Storage systems designed for archiving
applications are much less sensitive to performance con-
straints, as they are not part of the run-time application
processing.

In general computer systems grow over their lifetime and
the data under management tends to grow over the system
lifetime. Growth can be exponential, and in both primary
and archiving storage systems, exponential capacity growth
typical in modern computing environment presents a major
challenge as it results in increased cost, space, and power
consumption of the storage systems required to support ever
increasing amounts of information.

Existing storage solutions, and especially primary storage
solutions, rely on address-based mapping of data, as well as
address-based functionality of the storage system’s internal
algorithms. This is only natural since the computing appli-
cations always rely on address-based mapping and identifi-
cation of data they store and retrieve. However, a completely
different scheme in which data, internally within the storage
system, is mapped and managed based on its content instead
of'its address has many substantial advantages. For example,
it improves storage capacity efficiency since any duplicate
block data will only occupy actual capacity of a single
instance of that block. As another example, it improves
performance since duplicate block writes do not need to be
executed internally in the storage system. Existing storage
systems, either primary storage systems or archiving storage
systems are incapable of supporting the combination of
content based storage—with its numerous advantages—and
ultra-high performance. This is a result of the fact that the
implementation of content based storage scheme faces sev-
eral challenges:

(a) intensive computational load which is not easily
distributable or breakable into smaller tasks,

(b) an inherent need to break large blocks into smaller
block sizes in order to achieve content addressing at fine
granularity. This block fragmentation dramatically degrades
the performance of existing storage solutions,

(c) inability to maintain sequential location of data blocks
within the storage systems, since mapping is not address
based any more, and such inability causes dramatic perfor-
mance degradation with traditional spinning disk systems,

(d) the algorithmic and architectural difficulty in distrib-
uting the tasks associated with content based mapping over

20

25

35

40

45

50

55

60

65

2

a large number of processing and storage elements while
maintaining single content-addressing space over the full
capacity range of the storage system.

A number of issues arise with respect to such devices, and
it is necessary to consider such issues as performance,
lifetime and resilience to failure of individual devices,
overall speed of response and the like.

Such devices may be used in highly demanding circum-
stances where failure to process data correctly can be
extremely serious, or where large scales are involved, and
where the system has to be able to cope with sudden surges
in demand.

SUMMARY

In one aspect, a method includes providing a server that
stores a hash digest metadata table and configuring entries in
the hash digest metadata table to include entries that include
persistent fields and non-persistent fields. The hash digest
metadata table maps a hash digest representing X-Page data
to its metadata information. The persistent fields include a
short hash digest field, a physical layout offset field, a
deduplication reference count field and a flags field.

In another aspect, an article includes a non-transitory
computer-readable medium that stores computer-executable
instructions. The instructions cause a machine to provide a
server that stores a hash digest metadata table. The hash
digest metadata table maps a hash digest representing
X-Page data to its metadata information. The hash digest
metadata table includes entries that include persistent fields
and non-persistent fields. The persistent fields include a
short hash digest field, a physical layout offset field, a
deduplication reference count field and a flags field.

In a further aspect, an apparatus includes electronic hard-
ware circuitry configured to provide a server that stores a
hash digest metadata table. The hash digest metadata table
maps a hash digest representing X-Page data to its metadata
information. The hash digest metadata table includes entries
that include persistent fields and non-persistent fields. The
persistent fields include a short hash digest field, a physical
layout offset field, a deduplication reference count field and
a flags field.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram schematically illustrating a
system for data storage, having separate control and data
planes.

FIG. 2 shows an exemplary configuration of modules for
the system of FIG. 1.

FIG. 3 is a simplified diagram schematically illustrating
four different node configurations for the system.

FIG. 4 is a simplified schematic diagram showing the
nodes of FIG. 3 connected to a switch.

FIG. 5 is a simplified diagram showing a compute+SAN+
store node for the device of FIG. 1.

FIG. 6 is a simplified flow chart which illustrates the flow
for a read operation for one aligned X-page.

FIG. 7 is a simplified flow chart which illustrates the flow
in the event that a read request arrives for a range of
addresses spanning more than one X-Page but only one SL.

FIG. 8 is a simplified flow diagram illustrating the write
procedure for a single aligned X page.

FIG. 9 is a simplified flow diagram illustrating the process
for performing write operations to multiple full X-Pages.

FIG. 10 is a block diagram of an example of a data (D)
module.

US 9,442,941 Bl

3

FIG. 11 is a block diagram of an example of a metadata
entry including persistent fields and non-persistent metadata
fields.

FIG. 12 is a block diagram of an example of the persistent
fields in the metadata entry of FIG. 11.

DETAILED DESCRIPTION

Ahash digest metadata table maps each in use hash digest,
that represents actual data from an X-Page (as defined
herein), to its metadata information including its physical
page on the storage media (SSD), its memory copy (if it
exists), a mapping to any backup memory copy and a
reference count for the purpose of deduplication. Described
herein is an approach to reduce the amount of memory
consumed per hash digest and reach a point where most
metadata is held in memory and requiring minimal reading
of metadata from SSD as part of an I/O flow.

In a Content Addressable Storage (CAS) array, data is
stored in blocks, for example of 4 KB, where each block has
a unique large hash signature, for example of 20 bytes, saved
on Flash memory.

The examples described herein include a networked
memory system. The networked memory system includes
multiple memory storage units arranged for content address-
able storage of data. The data is transferred to and from the
storage units using separate data and control planes. Hashing
is used for the content addressing, and the hashing produces
evenly distributed results over the allowed input range. The
hashing defines the physical addresses so that data storage
makes even use of the system resources.

A relatively small granularity may be used, for example
with a page size of 4 KB, although smaller or larger block
sizes may be selected at the discretion of the skilled person.
This enables the device to detach the incoming user access
pattern from the internal access pattern. That is to say the
incoming user access pattern may be larger than the 4 KB or
other system-determined page size and may thus be con-
verted to a plurality of write operations within the system,
each one separately hashed and separately stored.

Content addressable data storage can be used to ensure
that data appearing twice is stored at the same location.
Hence unnecessary duplicate write operations can be iden-
tified and avoided. Such a feature may be included in the
present system as data deduplication. As well as making the
system more efficient overall, it also increases the lifetime of
those storage units that are limited by the number of write/
erase operations.

The separation of Control and Data may enable a sub-
stantially unlimited level of scalability, since control opera-
tions can be split over any number of processing elements,
and data operations can be split over any number of data
storage elements. This allows scalability in both capacity
and performance, and may thus permit an operation to be
effectively balanced between the different modules and
nodes.

The separation may also help to speed the operation of the
system. That is to say it may speed up Writes and Reads.
Such may be due to:

(a) Parallel operation of certain Control and Data actions
over multiple Nodes/Modules

(b) Use of optimal internal communication/networking
technologies per the type of operation (Control or Data),
designed to minimize the latency (delay) and maximize the
throughput of each type of operation.

Also, separation of control and data paths may allow each
Control or Data information unit to travel within the system

10

15

20

25

30

35

40

45

50

55

60

65

4

between Nodes or Modules in the optimal way, meaning
only to where it is needed and if/when it is needed. The set
of optimal where and when coordinates is not the same for
control and data units, and hence the separation of paths
ensures the optimization of such data and control move-
ments, in a way which is not otherwise possible. The
separation is important in keeping the workloads and inter-
nal communications at the minimum necessary, and may
translate into increased optimization of performance.

De-duplication of data, meaning ensuring that the same
data is not stored twice in different places, is an inherent
effect of using Content-Based mapping of data to D-Mod-
ules and within D-Modules.

Scalability is inherent to the architecture. Nothing in the
architecture limits the number of the different R, C, D, and
H modules which are described further herein. Hence any
number of such modules can be assembled. The more
modules added, the higher the performance of the system
becomes and the larger the capacity it can handle. Hence
scalability of performance and capacity is achieved.

The principles and operation of an apparatus and method
according to the present invention may be better understood
with reference to the drawings and accompanying descrip-
tion.

Reference is now made to FIG. 1 which illustrates a
system 10 for scalable block data storage and retrieval using
content addressing. The system 10 includes data storage
devices 12 on which the data blocks are stored. The storage
devices 12 are networked to computing modules, there being
several kinds of modules, including control modules 14 and
data modules 16. The modules carry out content addressing
for storage and retrieval, and the network defines separate
paths or planes, control paths or a control plane which goes
via the control modules 14 and data paths or a data plane
which goes via the data modules 16.

The control modules 14 may control execution of read
and write commands. The data modules 16 are connected to
the storage devices and, under control of a respective control
module, pass data to or from the storage devices. Both the
C and D modules may retain extracts of the data stored in the
storage device, and the extracts may be used for the content
addressing. Typically the extracts may be computed by
cryptographic hashing of the data, as will be discussed in
greater detail below, and hash modules (FIG. 2) may spe-
cifically be provided for this purpose. That is to say the hash
modules calculate hash values for data which is the subject
of storage commands, and the hash values calculated may
later be used for retrieval.

Routing modules 18 may terminate storage and retrieval
operations and distribute command parts of any operations
to control modules that are explicitly selected for the opera-
tion in such a way as to retain balanced usage within the
system 10.

The routing modules may use hash values, calculated
from data associated with the operations, to select the
control module for the distribution. More particularly, selec-
tion of the control module may use hash values, but typically
relies on the user address and not on the content (hash). The
hash value is, however, typically used for selecting the Data
(D) module, and for setting the physical location for data
storage within a D module.

The storage devices may be solid state random access
storage devices, as opposed to spinning disk devices; how-
ever disk devices may be used instead or in addition.

A deduplication feature may be provided. The routing
modules and/or data modules may compare the extracts or
hash values of write data with hash values of already stored

US 9,442,941 Bl

5

data, and where a match is found, simply point to the
matched data and avoid rewriting.

The modules are combined into nodes 20 on the network,
and the nodes are connected over the network by a switch
22.

The use of content addressing with multiple data modules
selected on the basis of the content hashing, and a finely-
grained mapping of user addresses to Control Modules allow
for a scalable distributed architecture.

A glossary is now given of terms used in the following
description:

X-PAGE—A predetermined-size aligned chunk as the
base unit for memory and disk operations. Throughout the
present description the X-Page size is referred to as having
4 KB, however other smaller or larger values can be used as
well and nothing in the design is limited to a specific value.

LUN or LOGICAL UNIT NUMBER, is a common name
in the industry for designating a volume of data, or a group
of data blocks being named with the LUN. Each data block
is referred to, by the external user of the storage system,
according to its LUN, and its address within this LUN

LOGICAL X-PAGE ADDRESS—I.ogical address of an
X-Page. The address contains a LUN identifier as well as the
offset of the X-Page within the LUN.

LOGICAL BLOCK—S512 bytes (sector) aligned chunk,
which is the SCSI base unit for disk operations.

LOGICAL BLOCK ADDRESS—I.ogical address of a
Logical Block. The logical block address contains a LUN
identifier as well as the offset of the logical block within the
LUN.

SUB-LUN—Division of a LUN to smaller logical areas,
to balance the load between C modules. Each such small
logical area is called a sub-LUN.

SUB-LUN UNIT SIZE—The fixed size of a sub-LUN.
X-Page Data—Specific sequence of user data values that
resides in an X-Page. Each such X-Page Data is uniquely
represented in the system by its hash digest.

D PRIMARY—The D module responsible for storing an
X-Page’s Data

D BACKUP—The D module responsible for storing a
backup for an X-Page Data. The backup is stored in a
non-volatile way (NVRAM or UPS protected).

ACRONYMS

LXA—Togical X-Page Address.

LB—Logical Block.

LBA—TIogical Block Address.

AUS—Atomic Unit Size.

SL—Sub-LUN.

SLUS—Sub-LUN Unit Size.

MBE—Management Back End.

The examples described herein to a block-level storage
system, offering basic and advanced storage functionality.
The design may be based on a distributed architecture,
where computational, Storage Area Networking (SAN), and
storage elements are distributed over multiple physical
Nodes, with all such Nodes being inter-connected over an
internal network through a switch device. The distributed
architecture enables the scaling of the system’s capabilities
in multiple aspects, including overall storage capacity, per-
formance characteristics in bandwidth and /O operations
per second (IOPS), computational resources, internal and
external networking bandwidth, and other. While being
based on a distributed architecture, the system presents,
externally, a unified storage system entity with scalable
capabilities.

10

15

20

25

30

35

40

45

50

55

60

65

6

The system’s architecture and internal algorithms imple-
menting the basic and advanced storage functions are opti-
mized for improved utilization of the capabilities of random-
access memory/storage media, as opposed to contrast with
mechanical-magnetic spinning disk storage media. The opti-
mizations are implemented in the design itself, and may, for
example, include the ability to break incoming writes into
smaller blocks and distribute the operation over different
Nodes. Such an adaptation is particularly suitable for ran-
dom access memory/storage media but is less suitable in a
spinning-disk environment, as it would degrade perfor-
mance to extremely low levels. The adaptation includes the
content/hash based mapping of data distributes the data over
different D Nodes in general and within D Nodes over
different SSD devices. Again, such a scheme is more suitable
for random access memory/storage media than for a spin-
ning-disk media because such spread of data blocks would
result in very poor performance in the spinning disk case.
That is to say, the described elements of the present archi-
tecture are designed to work well with random access media,
and achieve benefits in performance, scalability, and func-
tionality such as inline deduplication. Such random-access
memory media can be based on any or a combination of
flash memory, DRAM, phase change memory, or other
memory technology, whether persistent or non-persistent,
and is typically characterized by random seek/access times
and random read/write speeds substantially higher than
those exhibited by spinning disk media. The system’s inter-
nal data block mapping, the algorithms implementing
advanced storage functions, and the algorithms for protect-
ing data stored in the system are designed to provide storage
performance and advanced storage functionality at substan-
tially higher performance, speed, and flexibility than those
available with alternative storage systems.

Data mapping within the system is designed not only to
improve performance, but also to improve the life span and
reliability of the electronic memory media, in cases where
the memory technology used has limitations on write/erase
cycles, as is the case with flash memory. Lifetime maximi-
zation may be achieved by avoiding unnecessary write
operations as will be explained in greater detail below. For
the purpose of further performance optimization, life span
maximization, and cost optimization, the system may
employ more than a single type of memory technology,
including a mix of more than one Flash technology (e.g.,
single level cell—SLC flash and multilevel cell—MLC
flash), and a mix of Flash and DRAM technologies. The data
mapping optimizes performance and life span by taking
advantage of the different access speeds and different write/
erase cycle limitations of the various memory technologies.

The core method for mapping blocks of data internally
within the system is based on Content Addressing, and is
implemented through a distributed Content Addressable
Storage (CAS) algorithm.

This scheme maps blocks of data internally according to
their content, resulting in mapping of identical block to the
same unique internal location. The distributed CAS algo-
rithm allows for scaling of the CAS domain as overall
system capacity grows, effectively utilizing and balancing
the available computational and storage elements in order to
improve overall system performance at any scale and with
any number of computational and storage eclements.

The system supports advanced In-line block level dedu-
plication, which may improve performance and save capac-
ity.

Elements of the system’s functionality are: Write (store)
data block at a specified user address; Trim data block at a

US 9,442,941 Bl

7

specified user address; Read data block from a specified user
address; and In-line block level deduplication.

The following features may be provided: (1) A distributed
CAS based storage optimized for electronic random-access
storage media; The optimization includes utilizing storage
algorithms, mainly the content-based uniformly-distributed
mapping of data, that inherently spread data in a random
way across all storage devices. Such randomization of
storage locations within the system while maintaining a very
high level of performance is preferably achievable with
storage media with a high random access speed; (2) A
distributed storage architecture with separate control and
data planes; Data mapping that maximizes write-endurance
of storage media; System scalability; (3) System resiliency
to fault and/or failure of any of its components; (4) Use of
multi-technology media to maximize write-endurance of
storage media; and (5) In-line deduplication in ultrahigh
performance storage using electronic random-access storage
media.

The examples described herein implement block storage
in a distributed and scalable architecture, efficiently aggre-
gating performance from a large number of ultra-fast storage
media elements (SSDs or other), preferably with no perfor-
mance bottlenecks, while providing in-line, highly granular
block-level deduplication with no or little performance
degradation.

One challenge is to avoid performance bottlenecks and
allow performance scalability that is independent of user
data access patterns.

The examples described herein may overcome the scal-
ability challenge by providing data flow (Write, Read) that
is distributed among an arbitrary and scalable number of
physical and logical nodes. The distribution is implemented
by (a) separating the control and data paths (the “C” and “D”
modules), (b) maintaining optimal load balancing between
all Data modules, based on the content of the blocks
(through the CAS/hashing mechanisms), hence ensuring
always balanced load sharing regardless of user access
patterns, (¢) maintaining optimal load balancing between all
Control modules, based on the user address of the blocks at
fine granularity, hence ensuring always balanced load shar-
ing regardless of user access patterns, and (d) performing all
internal data path operations using small granularity block
size, hence detaching the incoming user access pattern from
the internal access pattern, since the user pattern is generally
larger than the block size.

A second challenge is to support inline, highly granular
block level deduplication without degrading storage (read/
write speed) performance. The result should be scalable in
both capacity—which is deduplicated over the full capacity
space—and performance.

The solution involves distributing computation-intensive
tasks, such as calculating cryptographic hash values, among
an arbitrary number of nodes. In addition, CAS metadata
and its access may be distributed among an arbitrary number
of nodes. Furthermore, data flow algorithms may partition
read/write operations in an optimally-balanced way, over an
arbitrary and scalable number of Nodes, while guaranteeing
consistency and inline deduplication effect over the com-
plete storage space.

In detaching the data from the incoming pattern, the
R-Module breaks up any incoming block which is larger
than the granularity size across sub-LUNs, sending the
relevant parts to the appropriate C-Modules. Each C-module
is predefined to handle a range or set of Sub-LUN logical
addresses. The C-Module breaks up the block it receives for
distribution to D-Modules, at a pre-determined granularity,

10

20

25

30

35

40

45

50

55

60

65

8

which is the granularity for which a Hash is now calculated.
Hence the end result is that a request to write a certain block
(for example of size 64 KB) ends up being broken up into
for example 16 internal writes, each write comprising a 4
KB block.

The specific numbers for granularity can be set based on
various design tradeofts, and the specific number used herein
of' 4 KB is merely an example. The broken down blocks are
then distributed to the D modules in accordance with the
corresponding hash values.

A further challenge is to address flash-based SSD write/
erase cycle limitations, in which the devices have a lifetime
dependent on the number of write/erase cycles.

The solution may involve Inline deduplication to avoid
writing in all cases of duplicate data blocks. Secondly,
content (hash) based mapping to different data modules and
SSDs results in optimal wear-leveling, ensuring equal
spread of write operations to all data modules and SSDs
independently of the user data/address access patterns.

In the following a system is considered from a functional
point of view. As described above with respect to FIG. 1, the
system 10 is architected around four main functional Mod-
ules designated R (for Router), C (for Control), D (for Data),
and H (for Hash). Being modular and scalable, any specific
system configuration includes at least one of R, C, D, and H,
but may include a multiplicity of any or all of these Modules.

Reference is now made to FIG. 2, which is a functional
block diagram of the system in which an H module 200 is
connected to an R module 202. The R module is connected
to both Control 204 and data 206 modules. The data module
is connected to any number of memory devices SSD 208.

A function of the R Module 202 is to terminate SAN
Read/Write commands and route them to appropriate C and
D Modules for execution by these Modules. By doing so, the
R Module can distribute workload over multiple C and D
Modules, and at the same time create complete separation of
the Control and Data planes, that is to say provide separate
control and data paths.

A function of the C Module 204 is to control the execution
of'a Read/Write command, as well as other storage functions
implemented by the system. It may maintain and manage
key metadata elements.

A function of the D Module 206 is to perform the actual
Read/Write operation by accessing the storage devices 208
(designated SSDs) attached to it. The D module 206 may
maintain metadata related with the physical location of data
blocks.

A function of the H Module is to calculate the Hash
function value for a given block of data.

Reference is now made to FIG. 3, which illustrates nodes.
The R, C, D, and H Modules may be implemented in
software, and executed on a physical Node. A system
includes at least one physical Node, and may include mul-
tiple Nodes. There are four possible Node configurations:
Compute Node 300, which includes control and hash mod-
ules, Compute+SAN Node 302 which includes a router as
well as control and hash modules, Compute+Store Node
306, which includes a data module in addition to compute
and hash modules, and a Compute+SAN+Store Node 306,
which includes all four modules. A system includes a storage
area networking or SAN function within at least one Node,
and a Store function within at least one Node. The SAN
function and the store function can be supported by the same
physical Node or any combination of multiple Nodes.

In FIG. 3 each node type shows the functional Modules
that execute, in at least one copy, within the Node, and

US 9,442,941 Bl

9

functional Modules that may optionally execute within this
Node. Optional Modules are shown in dashed line.

All Nodes include a switch interface 308, to allow inter-
connecting with a switch in a multi-Node system configu-
ration. A Node that contains a SAN function includes at least
one SAN Interface module 310 and at least one R Module.
A Node that contains a Store function includes at least one
SSD Driver Module 312 and at least one D Module. Hence,
Compute+SAN and Compute+SAN+STORE Nodes contain
a SAN Interface, to interface with the external SAN. The
interface may typically use a SCSI-based protocol running
on any of a number of interfaces including Fiber Channel,
Ethernet, and others, through which Read/Write and other
storage function commands are being sent to the system.
Compute+Store and Compute+SAN+Store Nodes contain
an SSD driver 312 to interface with SSDs 208 attached to
that specific Node, where data is stored and accessed.

Reference is now made to FIG. 4, which shows a high
level system block diagram. A system implementation
includes one or more Nodes 400, 402. In all cases where a
system contains more than two Nodes, all physical Nodes
are interconnected by a switch 404 which may be based on
any of a number of networking technologies including
Ethernet, InfiniBand and so forth. In the specific case of a
2-Node system, the two Nodes can be interconnected
directly without a need for a switch.

The interconnections between each Node and the Switch
may include redundancy, so as to achieve high system
availability with no single point of failure. In such a case,
each Node may contain two or more Switch Interface
modules 406, and the Switch may contain two or more ports
per physical Node.

As an example FIG. 5 illustrates a single Node system
configuration, in which R, C and D modules, 500, 502 and
504 respectively are together in a compute+SAN+Store
node 506. A switch interface 508 links to a switch. A SAN
interface 510 provides an interface for storage area network-
ing. An SSD driver 512 interfaces with the storage devices.

A four node system configuration is shown in FIG. 1
above. The configuration includes two compute and store
nodes and two compute+SAN nodes.

A system that is built from multiple physical Nodes can
inherently support a high availability construction, where
there is no single point of failure. This means that any Node
or sub-Node failure can be compensated for by redundant
Nodes, having a complete copy of the system’s meta-data,
and a complete redundant copy of stored data (or parity
information allowing recovery of stored data). The distrib-
uted and flexible architecture allows for seamless support of
failure conditions by simply directing actions to alternate
Nodes.

The R module is responsible for: routing SCSI 1/O
requests to the C modules, guarantee execution and return
the result; and balancing the work load between the C
modules for the requests it is routing.

An A—C table indicates which C module is responsible
for each logical X-page address (LXA). Each C module is
responsible for a list of Sub LUNs (SLs).

The R module receives requests for /Os from the SAN
INTERFACE, routes them to the designated C modules and
returns the result to the SAN INTERFACE.

If'an I/O operation spans across multiple SLs, and perhaps
multiple C modules, then the R module has the responsibil-
ity of breaking the big I/O operation into multiple smaller
independent operations according to the sub LUN unit size
(SLUS). Since the atomic unit size (AUS) is never larger
than the SLUS, as explained in greater detail below, each

20

25

40

45

55

10

such I/O is treated as an independent operation throughout
the system. The results may then be aggregated before
returning to the SAN INTERFACE.

The R module is responsible for maintaining an up-to-
date A—C table coordinated with the MBE. The A—C table
is expected to balance the range of all possible LXAs
between the available C modules.

For write operations, the R module instructs the calcula-
tion of the hash digest for each X-Page by requesting such
calculation from a Hash calculation module.

The C module is responsible for: receiving an I/O request
from an R module on a certain SL, guaranteeing its atomic
execution and returning the result; communicating with D
modules to execute the /O requests; monitoring the disk
content of its SLs’ logical space by associating each LXA
with its hash digest; and balancing the work load between
the D modules for the SLs it is maintaining.

An H—D table maps each range of hash digests to the
corresponding D module responsible for this range.

An A—H table maps each XA that belongs to the SLs C
is responsible for, to the hash digest representing the X-Page
Data that currently resides in this address.

The C module receives /O requests from R modules,
distributes the work to the D modules, aggregates the results
and guarantees an atomic operation. The result is returned to
the R module.

The C module maintains an up-to-date H—D table coor-
dinated with the MBE. The table is expected to balance the
range of all possible hash digests between the available D
modules.

The C module maintains an A—H table in a persistent
way. The C module may initiate 110 requests to D modules
in order to save table pages to disk, and read them from disk.
To avoid frequent disk operations, a Journal of the latest
table operations may be maintained.

Data is balanced between the C modules based on the
logical address, at the granularity of sub-LUNS.

The D module is responsible for: maintaining a set of
LUNs which are attached locally and performing all 1/O
operations on these LUN; managing the physical layout of
the attached L UNs; managing the mapping between X-Page
Data hash digests and their physical location in a persistent
way; managing deduplication of X-Page Data in a persistent
way; and receiving disk I/O requests from C modules,
perform them and returning a result.

The D module is also responsible for, for each write
operation, backing up the X-Page Data in the designated D
backup module and performing read-modify operations for
writes that are smaller than X-Page size (This process also
involves computing a hash digest for these X-Pages).

The D module is further responsible for maintaining an
up-to-date H—(D, D, 4,,,) table coordinated with the MBE.
The H—(D, D, ,,) table is expected to balance the range
of all possible hash digests between the available D mod-
ules.

The D module does not communicate directly with R
modules. The only interaction with R modules involves
RDMA read/write operations of X-Page Data.

Balancing between the D modules is based on hashing of
the content.

The D module makes use of a hash digest metadata table.
The hash digest metadata table maps each in use hash digest,
that represents actual X-Page Data, to its meta data infor-
mation including its physical page on the storage media
(SSD), its memory copy (if exists), a mapping to any backup
memory copy and a reference count for the purpose of
deduplication.

US 9,442,941 Bl

11

A further structure used is the H—=(D, Dy,,,,,,) table. The
H—(D, D,,4,,) table maps each range of hash digests to the
corresponding D module responsible for the range as well as
the D, module responsible for the range.

The D modules allocate a physical page for each X-Page.
The D modules also manage the memory for the physical
storage. They allocate memory pages for read/write opera-
tions and perform background destaging from memory to
storage media when necessary, for example, when running
low on memory.

The D modules manage a separate nonvolatile memory
pool (NVRAM or UPS protected) for X-Page Data backup
purposes. The backup holds X-Pages that are held in
memory of the D primary and have not yet been destaged.
When re-balancing between D modules occurs (due to a D
module failure for example), the D module may communi-
cate with other D modules in order to create new backup
copies or move a primary ownership as required.

The D modules allow deduplication per X-Page Data by
maintaining a persistent reference count that guarantees only
one copy per X-Page Data. The D modules manage the hash
digest metadata table in a persistent way. The table is
coordinated with the physical layout for physical pages
allocation, with the memory pointer, memory backup
pointer and deduplication reference count.

The D modules receive /O requests from C modules,
perform the requests while supporting deduplication and
return the result. The D modules may perform RDMA
read/write operations on memory that resides in other mod-
ules, such as R modules as mentioned above, as part of the
1/O operation.

When a write operation smaller than the size of an X-Page
is received, the D module may read the entire X-Page to
memory and perform partial X-Page modification on that
memory. In this case race conditions may occur, for example
when two small writes to the same X-Page occur in parallel,
and the D module may be required to compute the hash
digest of the resulting X-Page. This is discussed in greater
detail below.

The H-Module calculates the Hash function of a given
block of data, effectively mapping an input value to a unique
output value. The Hash function may be based on standards
based hash functions such as SHA-1 and MDS5, or based on
a proprietary function. The hash function is selected to
generate a uniformly distributed output over the range of
potential input values.

The H modules usually share nodes with an R module but
more generally, the H modules can reside in certain nodes,
in all nodes, together with R modules, or together with C or
D modules.

The following discussion provides high level /O flows
for read, write and trim.

Throughout these flows, unless noted otherwise, control
commands are passed between modules using standard RPC
messaging, while data “pull” operations may use RDMA
read. Data push (as well as Journal) operations may use
RDMA write.

The read flow of one X-Page may consist of one R module
which receives the read request from the application, one C
module in charge of the address requested and one D module
which holds the X-Page to be read. Larger, or unaligned,
requests may span several X-Pages and thus may involve
several D modules. These requests may also span several
SLs, in which case they may involve several C modules as
well.

Reference is now made to FIG. 6 which illustrates the
flow for a read operation for one aligned X-page. When the

10

15

20

25

30

35

40

45

50

55

60

65

12

R module receives a read request from an application the R
module allocates a request 1D for the operation; translates
the LBA to LXA; allocates a buffer for the data to be read;
consults the A—C component to determine which C module
is in charge of this LXA; and sends the designated C module
a read request which includes parameters that include a
request ID; an LXA; and a pointer to the allocated buffer.

The C module, when receiving the request, consults the
A—H component, from which it obtains a hash digest
representing the X-Page to be read; consults the H—=D
component to determine which D module holds the X-Page
in question; and sends this D module a read request which
includes parameters that include a request 1D (as received
from the R module), the hash digest, a pointer to the buffer
to read to, as received from the R module; and an identifier
of the R module.

The D module, when receiving the request, reads the data
of the requested X-Page from SSD and performs an RDMA
write to the requesting R module, specifically to the pointer
passed to it by the C module.

Finally the D module returns success or error to the
requesting C module.

The C module in turn propagates success or error back to
the requesting R module, which may then propagate it
further to answer the application.

Reference is now made to FIG. 7, which illustrates the
flow in the case that a read request arrives for a range of
addresses spanning more than one X-Page but only one SL.
In such a case the R module sends the designated C module
a read command with the parameters that include a request
1D, first LXA, size of the requested read in X-Pages-n, and
n pointers to the allocated X-Page buffers.

The rest of the R module’s treatment is identical to the
aligned one X-Page scenario previously described herein.

The C module, when receiving the request divides the
logical address space to LXAs. For each LXA the C module
consults the A—H component to determine the correspond-
ing hash digest; consults the H—D table to determine which
D module is responsible for the current LXA; sends each D
module a read command containing all the hashes that the
respective D module is responsible for. The parameters of
the read command include a request ID (as received from the
R module); a list of respective hash-pointer pairs; and the
identifier of the R module.

Each D module, when receiving the request, acts per
hash-pointer pair in the same manner as described above for
one X-Page. Aggregated success or error is then sent to the
requesting C module.

The C module aggregates all the results given to it by the
D modules and return success or error back to the requesting
R module, which may then answer the application.

In the case that a read request spans multiple SLs, the R
module splits the request and sends several C modules read
requests. Each C module may receive one request per SL.
The flow may continue as in the simpler case above, except
that now the R module aggregates the responses before it
answers the application.

Read requests smaller than 4 KB, as well as requests not
aligned to 4 KB, may be dealt with at the R module level.
For each such parcel of data, the R module may request to
read the encompassing X-Page. Upon successful completion
of the read command, the R module may crop the non-
relevant sections and return only the requested data to the
application.

The write flow of one X-Page may consist of one R
module which receives the write request from the applica-
tion, one C module in charge of the address requested and

US 9,442,941 Bl

13

three D modules: D,,,,, which is in charge of the X-Page
Data to be written (according to its appropriate hash digest),
D,,; which was in charge of the X-Page Data this address
contained previously (“old” hash digest), and D, in
charge of storing a backup copy of the X-Page Data to be
written.

Reference is now made to FIG. 8, which is a simplified
flow diagram illustrating the write procedure for a single
aligned X page according to the examples described herein.

When an R module receives a write request from the
application, the R module allocates a request ID for this
operation; translates the LBA to an LXA; computes a hash
digest on the data to be written; consults its A—C compo-
nent to determine which C module is in charge of the current
LXA; and sends the designated C module a write command
with parameters that include a request ID; an LXA; a hash
digest; and a pointer to the buffer containing the data to be
written.

The C module, when receiving the request consults its
H—D component to understand which D module is in
charge of the X-Page to be written (D, ,...,); and sends D, .,
a write request with parameters that include the request ID
(as received from the R module); the hash digest (as received
from the R module); the pointer to the data to write (as
received from the R module); and the identifier of the R
module.

The D module receiving the write command, D,,,,.,, may
first check if it already holds an X-Page corresponding to
this hash. There are two options here:

First, D, does not have the X-Page. In this case D,
fetches the data from the R module using RDMA read and
stores it in its memory; consults the H—=D component to
determine which D module is in charge of storing a backup
copy of this X-Page (D,,,4,,,); performs an RDMA write of
the X-Page Data to the D, ,,,, backup memory space; and
returns success (or failure) to the C module.

Second, D,,,,., has the X-Page. In this case D,,,.,
increases the reference count, returns success (or failure) to
the C module.

The C module waits for a response from D, . If a
success is returned, the C module updates the A—H table to
indicate that the LXA in question should point to the new
hash and returns a response to the requesting R module.

If this is not a new entry in the A—H table, the C module
asynchronously sends a decrease reference count command
to D,,; (the D module responsible for the hash digest of the
previous X-Page Data). These commands may be aggre-
gated at the C module and sent to the D modules in batches.

The R module may answer the application once it receives
a response from the C module.

Reference is now made to FIG. 9, which is a flow diagram
illustrating the process for writes to multiple full X-Pages.

In the case that the write request spans a range of
addresses which include more than one X-Page but only one
SL, the R module sends the designated C module a write
command with parameters that include a request ID; a first
LXA; a size of the requested write in LXAs-n; and Hg,,
which is a unique identifier of the entire chunk of data to be
written. H,;- may be a computed hash digest and thus equal
for two identical chunks of data.

Additional parameters sent with the write command are n
pointers that point to the buffers which hold the data to be
written.

The rest of the R module treatment is the same as for the
aligned one X-Page scenario.

The C module, when receiving the request, consults its
H—D component to understand which D module is in

10

15

20

25

30

35

40

45

50

55

60

65

14

charge of Hz,; (D) and generates a hash digest per
pointer by replacing one byte of H, with the offset of that
pointer. It is noted that this byte must not collide with the
bytes used by the H—=D table distribution.

It may send D,,,,...,, a write request with the parameters that
include the request ID (as received from the R module); a list
of respective hash-pointer pairs; and the Identifier of the R
module.

The D module, when receiving the request, acts per
hash-pointer pair in the same manner as described above for
one X-Page. Aggregated success or error is then sent to the
requesting C module.

The C module waits for a response from D,,,,.,. If the
response indicates success, the C module updates its A—H
table to indicate that the LXAs in question should point to
the new hashes. Updating of entries in the A—H table may
be done as an atomic operation, to ensure the write request
is atomic. Note that all requests aligned to 4 KB (or another
predefined block size) that fall within a SL. may be atomic.
The C module returns a response to the requesting R
module. The C module adds the list of old hashes to the
“decrease reference” batch if needed.

The R module answers the application once it receives a
response from the C module.

In the case in which a write request spans multiple SLs,
the R module splits the request and sends smaller write
requests to several C modules. Each C module receives one
request per SL. (with a unique request ID). The flow con-
tinues as in the simpler case above, except that now the R
module aggregates the responses before it answers the
application.

Referring to FIG. 10, in one example, a D module 600
includes a hash digest metadata component (HMD) 602,
which stores a hash digest metadata table 604, a user data
cache component (UDC) 618 and a physical layout compo-
nent (PLC) 632. The HMD 602 performs as a server to
clients such as the UDC 618 and the PLC 632.

The hash digest metadata table 604 holds a reference
count (ref-count) of the hash digest as part of deduplication
implementation. The HMD 602 deletes a hash digest when
its count reaches zero.

The UDC 618 component holds the data in memory and
writes it asynchronously to the SSD using the PL.C API. The
UDC 618 also holds an in-memory read cache. The PL.C 632
is responsible for managing the data on the SSD and for
applying data protection algorithms such as RAID, for
example. Both the UDC 618 and the PL.C 632 use the HMD
602 to hold the location of the data per hash—in memory
(UDC) or on SSD (PLC).

The HMD 602 performs mapping of hash digest to its
metadata. The metadata is owned by the different clients as
well as HMD 602 itself. HMD 602 also provides APIs 606
to generate new metadata entries, finds the new metadata
entries and accesses their content. The HMD 602 also
performs metadata backup for failure recovery. Some of the
metadata that is kept per hash digest must be persistent.
HMD 602 uses a journal. The journal is used to log metadata
changes in remote memory and then a journal component
(not shown) will aggregate these log entries and write them
to the SSD in an amortized fashion. This approach is much
faster than hardening every metadata change directly to
SSD. The HMD 602 also hardens metadata to SSD to protect
this data.

A hash digest takes up about 20 bytes. The expected
number of hash digests in the hash digest metadata table 604
is limited by the amount of space available on the SSDs after
excluding space reserved for metadata and data protection

US 9,442,941 Bl

15

(e.g., RAID). The challenge of managing a hash digest based
table in a memory efficient way is not trivial, but having the
HMD 602 manage the entire metadata allows for efficient
processing. Thus, the client components (e.g., UDC 618 and
PLC 632) are focused only with their own logic and algo-
rithms. However, the client components have a well-defined
interface with the HMD 602, which manages the hash digest
based table 604 as well as the metadata backup. The HMD
provide access to metadata of a specific hash digest given
that hash or a handle that represents it.

There are different types of metadata that the HMD 602
is required to hold and there are challenges in keeping this
metadata in a memory efficient way. For example, one
challenge is to reduce as much as possible the amount of
memory consumed per hash digest in order to reach a point
where most of the metadata is held in memory and there is
very little, if any, reading of any metadata from an SSD as
part of an I/O flow.

Assuming that the hash digests values are distributed
uniformly, the metadata entries are held in buckets where the
first bytes of the digest are used as a bucket index. When
determining how many buckets to use, there is a trade-off.
The more buckets used, the less number of entries there is
on average per bucket (better performance) but the more
overall memory that is consumed.

In one example, the range of reasonable values is between
using 24 bits (3 bytes) and using around 28 bits. As used
herein 3 bytes are used as bucket index; however, other byte
sizes may be used. Since the first 3 bytes of a hash digest are
used as bucket index, there is no need to hold them inside
each entry in that bucket, so that 3 bytes are saved in every
entry.

A linked list of arrays or entries is held in a bucket. Each
entry is marked by a flag if it is allocated or free to use (to
avoid the memory of keeping a linked list of entries). When
a new entry is allocated, the list is traversed to find a free
spot—the list is traversed anyway to look for short hash
collisions as further described herein. When an entry is free
it is marked as free.

There is a tradeoff regarding what is the size of each array.
If a small array is used more memory is wasted on the
pointers between the arrays. If large arrays are used, more
memory is wasted on “almost empty” arrays—where only
one entry is in such an array, all the rest of that array is
unused. Empty arrays are a larger waste, so that small arrays
are used. There is no point to use an array smaller than a
cache line (64 bytes), since cache lines will not be shared
between buckets. Thus, a cache line as one array is chosen
and a bucket will be a cache line chain. 4 bytes are taken out
of every cache line as a pointer to the next cache line.

Every time a cache line that was linked to a chain is
completely freed up from all its entries, it will be freed back
to a large pool of cache lines, so that cache lines can move
from bucket to bucket according to the distribution of entries
between them.

When hardening the hash digest to SSD the entire 20
bytes of the hash digest are written. However, in memory
less bytes can be held and any collisions are dealt with
separately. This is called a short hash representation. In one
example, the short hash is a short hash described in U.S.
patent Ser. No. 14/037,626, filed Sep. 26, 2013 entitled
“Generating a Short Hash Handle” assigned to the same
assignee as the present patent application.

The total number of possible hash digests is limited by the
SSD capacity. For 1 Tbyte, there are 256 M possible values.
For 16 Thytes, there are 4 Gbyte possible values.

10

15

20

25

30

35

40

45

50

55

60

65

16

6 bytes are used to hold a short hash representation. The
first 3 bytes are used as bucket index. The remaining 3 bytes
are used for managing short hash collisions. One bit will be
used to mark if this short hash has a collision. This leaves 47
bits or 2*7 possibilities. Thus, the collision probability for 16
Tbyte SSD capacity is 1:2'°, meaning 1:32K. In the case of
collisions where there is more than one entry with the same
“short” hash, the first short hash that was added will be still
held as a short hash. The second short hash will be put in a
separate pool (array) of full hashes. This pool can hold up to
8 M hashes (22%) since the suffix of 3 bytes (except for the
collision bit) may be used as an index to this pool.

The size of the full hash pool is around 160 Mbyte. In
cases where this pool is exhausted as well as cases where the
full hash is required from a short hash, the full hash is read
from the SSD and a read of the metadata is performed.

Referring to FIG. 11, for a metadata entry 700 there are
persistent fields 714 and non-persistent metadata fields 730.
The non-persistent fields 730 are owned by a client compo-
nent, for example UDC 618, and are held by the client
component itself. The HMD 602 metadata entry will have a
cross reference against the corresponding metadata entry in
the client component. Using the UDC 618 as an example
(since UDC 618 has no persistent fields), the HMD 602
entry will hold a UDC (MD entry) handle that will allow the
UDC 618 to get an metadata entry by hash digest. The UDC
618 will hold a handle to the HMD 602 entry to be able to
modify the UDC handle when needed.

For persistent fields 714 it is more complex since the
HMD 602 needs to backup the actual values of those fields,
so it does require access to their values. In this case there are
two options. The first option is to hold a client component
handle (same as in the non-persistent case) and have an API
obtain the actual values to harden when required. The
second option is to hold the hardened fields directly in the
metadata entry. In one example, the second option is chosen
since it is simpler, and it avoids potential deadlocks. Dead-
locks are cases where the HMD 602 is locking an entry A
and calls a client component to get a metadata field value,
and the client component tries to take lock B for this
purpose. And in another thread, another client component
locks lock B and then calls the HMD 602 which tries to lock
entry A. Thus, the client components are waiting for each
other. Since the HMD 602 is a server only and not a client
requests come in one direction to avoid deadlocks.

Referring to FIG. 12, the persistent fields 714 include a
short hash digest field 802, a physical layout offset field 808,
a deduplication reference count field 814 and a flags field
822. The data saved in the persistent fields are saved in a
persistent manner. The short hash digest field 802 is 3 bytes
and is controlled by the HMD 602.

The physical layout offset field 808 is 4 bytes and 2 bits
(34 bits) and is controlled by the PL.C 632. The physical
layout offset field 808 can be narrowed down to 34 bits
assuming D module SSDs capacity is limited to 64 Thytes
and assuming the volume index is not coded inside the offset
(“global” offset across different SSDs using some kind of
mapping).

The deduplication reference count field 814 is 2.5 bytes.
The maximal value here is dependent on the logical space of
an application. Assuming, for example, 128 Tbyte will bring
us to 2°°. In other examples up to 5 bytes could be safely
used for this field. In order to achieve 2.5 bytes 20 bits are
used where one bit marks the ones that overflow. If the bit
is off, the remaining 19 bits hold the actual reference count.
If the bit is on, the remaining 19 bits are an index to a
separate array of larger ref-counts (5 bytes). The size of the

US 9,442,941 Bl

17

“large” ref-counts pool is a few Mbytes and we gain that in
the common case we use only 2.5 bytes.

The flags field 822 is 0.5 bytes and is controlled by the
HMD 602. The flags field 822 includes two control flags on
each entry. A first control flag marks if it is allocated or not,
and the second control flag if it is extended or not (see
below). These 2 bits can be combined with the 0.5 byte of
the ref-count and can also hold the additional 2 bits of the
physical layout offset

The number of entries that have valid non persistent fields
730 is significantly smaller than the total number of entries.
The UDC 818 has such fields. The UDC size can be limited
in 4 Gbytes, which is 1 M number of pages. This is a small
enough number to hold a separate pool for “extended”
entries with non-persistent fields.

The size of this pool can be 1 M entries and 3 bytes may
be used as an index to each entry in the pool (array). In order
not to add these 3 bytes to the metadata entry it is swapped
with a persistent field and the field value is put in the pool
entry. In one example, the physical layout offset may be
chosen, since its 4 bytes. So, for entries that are currently
extended, the extended entry index is put in the PL offset and
the actual PL offset along with the non-persistent fields is in
the extended entry.

Thus, a metadata entry contains 10 bytes. How much
memory that is required may be estimated. For example, for
a 1 Tbyte SSD gross capacity there are 256 M possible hash
digests. If there are 16 M buckets, there is on average 16
entries per bucket. Since the metadata entries are put in
cache lines, each 6 entries take 64 bytes. For 16 entries there
are 3 cache lines which take 192 bytes. Therefore there is
overall of 16 M*192=3 Gbyte of memory in the HMD 602
is consumed. For a 2 Tbyte SSD gross capacity 6 Gbyte of
memory in the HMD 602 is consumed. For a 4 Thyte SSD
gross capacity 11 Gbyte of memory in the HMD 602 is
consumed. For a 8 Tbyte SSD gross capacity 22 Gbyte of
memory in the HMD 602 is consumed. For a 16 Thyte SSD
gross capacity 43 Gbyte of memory in the HMD 602 is
consumed.

The system described herein may be implemented, at least
in part, via a computer program product, (e.g., in a non-
transitory machine-readable storage medium such as, for
example, a non-transitory computer-readable medium), for
execution by, or to control the operation of, data processing
apparatus (e.g., a programmable processor, a computer, or
multiple computers)). Each such program may be imple-
mented in a high level procedural or object-oriented pro-
gramming language to communicate with a computer sys-
tem. However, the programs may be implemented in
assembly or machine language. The language may be a
compiled or an interpreted language and it may be deployed
in any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment. A computer program may
be deployed to be executed on one computer or on multiple
computers at one site or distributed across multiple sites and
interconnected by a communication network. A computer
program may be stored on a non-transitory machine-read-
able medium that is readable by a general or special purpose
programmable computer for configuring and operating the
computer when the non-transitory machine-readable
medium is read by the computer to perform the processes
described herein. For example, the processes described
herein may also be implemented as a non-transitory
machine-readable storage medium, configured with a com-
puter program, where upon execution, instructions in the
computer program cause the computer to operate in accor-

10

15

20

25

30

35

40

45

50

55

60

65

18

dance with the processes. A non-transitory machine-readable
medium may include but is not limited to a hard drive,
compact disc, flash memory, non-volatile memory, volatile
memory, magnetic diskette and so forth but does not include
a transitory signal per se.

Elements of different embodiments described herein may
be combined to form other embodiments not specifically set
forth above. Other embodiments not specifically described
herein are also within the scope of the following claims.

What is claimed is:

1. A method comprising:

providing a server that stores a hash digest metadata table,
the hash digest metadata table mapping a hash digest
representing X-Page data to its metadata information;

configuring entries in the hash digest metadata table to
include entries comprising persistent fields and non-
persistent fields, the persistent fields comprising a short
hash digest field, a physical layout offset field, a dedu-
plication reference count field and a flags field;

configuring the server to be a server to clients comprising
a user data cache component (UDC) and a physical
layout component (PLC);

enabling the short hash digest field to be controlled by the
server;

enabling the physical layout offset field to be controlled
by the PLC;

enabling the deduplication reference count field to be
controlled by the server; and

enabling the flags field to be controlled by the server.

2. The method of claim 1, further comprising configuring
the short hash digest field to be 3 bytes in size.

3. The method of claim 1, further comprising configuring
the physical layout offset field to be 4 bytes and 2 bits (34
bits).

4. The method of claim 1, further comprising configuring
the deduplication reference count field is 2.5 bytes (20 bits).

5. The method of claim 1, further comprising configuring
the flags field to be 0.5 bytes.

6. The method of claim 1, further comprising enabling the
non-persistent field to be controlled by the UDC.

7. An article comprising:

a non-transitory computer-readable medium that stores
computer-executable instructions, the instructions
causing a machine to provide a server that stores a hash
digest metadata table,

wherein the hash digest metadata table maps a hash digest
representing X-Page data to its metadata information
and the hash digest metadata table includes entries
comprising persistent fields and non-persistent fields,
the persistent fields comprising a short hash digest
field, a physical layout offset field, a deduplication
reference count field and a flags field;

wherein the server is configured to be a server to clients
comprising a user data cache component (UDC) and a
physical layout component (PLC), and

wherein the short hash digest field is controlled by the
server, the physical layout offset field is controlled by
the PLC, the deduplication reference count field is
controlled by the server and the flags field is controlled
by the server and the non-persistent field to be con-
trolled by the UDC.

8. The article of claim 7, wherein the short hash digest

field is 3 bytes in size.

9. The article of claim 7, wherein the physical layout
offset field is 4 bytes and 2 bits (34 bits).

10. The article of claim 7, wherein the deduplication
reference count field is 2.5 bytes (20 bits).

US 9,442,941 Bl

19
11. The article of claim 7, wherein configuring the flags
field is 0.5 bytes.
12. An apparatus, comprising:
electronic hardware circuitry configured to provide a
server that stores a hash digest metadata table,

wherein the hash digest metadata table maps a hash digest
representing X-Page data to its metadata information,
the hash digest metadata table comprising entries com-
prising persistent fields and non-persistent fields, the
persistent fields comprising a short hash digest field, a
physical layout offset field, a deduplication reference
count field and a flags field;

wherein the server is configured to be a server to clients

comprising a user data cache component (UDC) and a
physical layout component (PLC), and

wherein the short hash digest field is controlled by the

server, the physical layout offset field is controlled by
the PLC, the deduplication reference count field is
controlled by the server and the flags field is controlled
by the server and the non-persistent field to be con-
trolled by the UDC.

13. The apparatus of claim 12 wherein the circuitry
comprises at least one of a processor, a memory, a program-
mable logic device or a logic gate.

14. The apparatus of claim 12, wherein the short hash
digest field is 3 bytes in size, the physical layout offset field
is 4 bytes and 2 bits (34 bits), the deduplication reference
count field is 2.5 bytes (20 bits), the flags field is 0.5 bytes.

#* #* #* #* #*

10

15

20

25

20

